

27th Scientific Symposium of the Austrian Pharmacological Society Vienna, 29–30 September 2023

MEETING ABSTRACT

A2.22

TRPM7 ion channel and kinase drives AKT signaling and immune-cell activation

Birgit HOEGER¹, Anna MADLMAYR¹, Kilian HÖLTING², Wiebke NADOLNI², Dorothea LEWITZ², Tanja HAIDER¹, Sarah HAMPE², Marco FRATICELLI², Vladimir CHUBANOV², Markus SPERANDIO³, Ingrid BOEKHOFF², Thomas GUDERMANN², Susanna ZIERLER^{1,2,*}

¹ Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Austria; ²Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilian University of Munich, Germany; ³Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilian University of Munich, Germany

Background: Ion channels of the TRP family are crucial for cellular homeostasis. TRPM7 is a unique member as ion-channel-coupled protein kinase. Besides its fundamental ability to transduce divalent cations such as Mg^{2+} and Ca^{2+} , it drives cellular signaling by a constitutively active intracellular kinase domain. In previous work we have demonstrated a role of TRPM7 kinase in T-cell signaling, promoting Th17 differentiation and gut immunity. In a murine model, TRPM7 kinase facilitated induction of acute graft-versus-host disease. SMAD2 thereby serves as TGF- β -dependent cellular substrate of TRPM7 kinase, driving proinflammatory signals and Th17 differentiation.

Methods: We here investigated TRPM7-dependent activation pathways of human immune cells and related cell lines, by a combinatorial approach of flow cytometry, western blot, imaging and *in vitro* assays.

Results: We have identified the AKT signaling hub downstream of TRPM7 kinase, facilitating activation of neutrophils and T cells. In human and murine neutrophils, we pinpointed this to AKT/mTOR-mediated induction of oxidative burst and directed cell migration [1]. In T cells, TRPM7-dependent Mg²⁺ conductance is crucial for cellular survival and proliferation, and the protein facilitates T-cell-receptor-mediated Ca²⁺ flux. We could show that TRPM7 is required for T-cell activation, involving induction of AKT-dependent signaling pathways. *In vitro*, we identified a direct interaction of TRPM7 kinase phosphorylating AKT protein, confirming previous hypotheses.

Discussion: Our data suggest TRPM7 kinase as potential target in inflammatory and/or malignant diseases, due to its interconnection with AKT signaling and pro-inflammatory cellular responses.

Acknowledgements: S.Z. thanks the German Research Foundation DFG for grant TRR-152 in support of this study.

Keywords: ion channels – immunity – AKT signalling – TRPM7 kinase

Reference:

 Nadolni W, Immler R, Hoelting K, Fraticelli M, Ripphahn M, Rothmiller S, Matsushita M, Boekhoff I, Gudermann T, Sperandio M, Zierler S: TRPM7 Kinase Is Essential for Neutrophil Recruitment and Function via Regulation of Akt/mTOR Signaling. Front Immunol, 2021; 11:606893. doi:10.3389/fimmu.2020.606893

^{*}Corresponding author e-mail: susanna.zierler@jku.at